教授
博士生导师
硕士生导师
教师拼音名称:linjianjian
电子邮箱:
入职时间:2018-09-11
所在单位:化学与分子工程学院
学历:博士研究生
办公地点:四方校区第一实验楼216
性别:女
联系方式:19862229511
学位:工学博士
职称:教授
毕业院校:澳大利亚伍伦贡大学
最后更新时间:..
关键字:EFFICIENT; COBALT; ENCAPSULATION; NANOSHEETS; REDUCTION; PHOSPHIDE; MOS2; IRON; RICH; OER
摘要:The rational design for transition metals-based carbon nano-materials as efficient electrocatalysts still remains a crucial challenge for economical electrochemical hydrogen production. Carbon nanotubes (CNTs) as attractive electrocatalysts are typically activated by non-metal dopant to promote catalytic performance. Metals doping or metal/non-metal co-doping of CNTs, however, are rarely explored. Herein, this work rationally designs bimetal oxide templates of ZnCo2O4 for heterogeneously doping Zn and N into Co nanoparticles embedded carbon nanotubes (Co@Zn-N-CNTs). During the formation of CNTs, Zn atoms volatilize from ZnCo2O4 and in situ dope into the carbon skeleton. In particular, owing to the low electronegativity of Zn, the electrons aptly transfer from Zn to carbon atoms, which generate a high electron density for the carbon layers and offer more preponderant catalytic sites for hydrogen reduction. The Co@Zn-N-CNTs catalyst exhibits enhanced hydrogen evolution reaction activity in 0.5 m H2SO4 electrolyte, with a low onset potential of -20 mV versus RHE at 1 mA cm(-2), an overpotential of 67 mV at 10 mA cm(-2), a small Tafel slope of 52.1 mV dec(-1), and persistent long-term stability. This study provides brand-new insights into the utilization of Zn as electronic regulator and activity promoter toward the design of high-efficiency electrocatalysts.
卷号:18
期号:44
是否译文:否