教授
博士生导师
硕士生导师
教师拼音名称:linjianjian
电子邮箱:
入职时间:2018-09-11
所在单位:化学与分子工程学院
学历:博士研究生
办公地点:四方校区第一实验楼216
性别:女
联系方式:19862229511
学位:工学博士
职称:教授
毕业院校:澳大利亚伍伦贡大学
最后更新时间:..
关键字:ELECTROCATALYTIC ACTIVITY; TUNGSTEN DISULFIDE; ENHANCED OXYGEN; WS2 NANOSHEETS; ACTIVE-SITES; EFFICIENT; PERFORMANCE; COMPOSITE; WSE2
摘要:Two-dimensional (2D) heterostructure presents excellent flexibility in modifying the electrocatalytic activity. Transition metal dichalcogenides (TMDs) which have some heterostructure were used to improve the exposure of active sites, revealed an excellent catalytic activity for hydrogen evolution reaction (HER) and continue to attract many studies. In this study, we design a unique flowerlike WS2/WSe2 heterostructure by heterojunction engineering. This multiscale morphology control design combines the compositional and structural advantages of WS2/WSe2 heterojunction into a hierarchical architecture, which can modulate electronic structure, remarkably facilitating the exposure of the more electrochemical active sites. As expected, the heterostructured WS2/WSe2 catalyst displays remarkable HER property with a low overpotential of 121 mV at 10 mA cm-2, and a small Tafel slope of 74.08 mV dec-1 with significant durability. We introduce the first example of flowerlike WS2/WSe2 heterostructure as a HER electrochemical catalyst. This work is expected to open a new door for the discovery of other 2D heterostructure as effective catalysts for renewable energy.
卷号:443
期号:
是否译文:否