青岛科技大学  English 
林健健
赞  

教授 博士生导师  
硕士生导师  

教师拼音名称:linjianjian

电子邮箱:

入职时间:2018-09-11

所在单位:化学与分子工程学院

学历:博士研究生

办公地点:四方校区第一实验楼216

性别:女

联系方式:19862229511

学位:工学博士

职称:教授

毕业院校:澳大利亚伍伦贡大学

手机版

访问量:

最后更新时间:..

Metal–Organic Frameworks and Their Derived Materials: Emerging Catalysts for a Sulfate Radicals-Based Advanced Oxidation Process in Water Purification

关键字:Chemicals removal (water treatment);Catalyst activity - Metals - Oxidation - Purification - Sulfur compounds - Water treatment plants

摘要:With the ever-growing environmental issues, sulfate radical (SO<inf>4</inf><sup>•−</sup>)-based advanced oxidation processes (SR-AOPs) have been attracting widespread attention due to their high selectivity and oxidative potential in water purification. Among various methods generating SO<inf>4</inf><sup>•−</sup>, employing heterogeneous catalysts for activation of peroxymonosulfate or persulfate has been demonstrated as an effective strategy. Therefore, the future advances of SR-AOPs depend on the development of adequate catalysts with high activity and stability. Metal–organic frameworks (MOFs) with large surface area, ultrahigh porosity, and diversity of material design have been extensively used in heterogeneous catalysts, and more recently, enormous effort has been made to utilize MOFs-based materials for SR-AOPs applications. In this work, the state-of-the-art research on pristine MOFs, MOFs composites, and their derivatives, such as oxides, metal/carbon hybrids, and carbon materials for SR-AOPs, is summarized. The mechanisms, including radical and nonradical pathways, are also detailed in the discussion. This work will hopefully promote the future development of MOFs-based materials toward SR-AOPs applications.<br/> © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

卷号:15

期号:16

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn