青岛科技大学  English 
李国倡
赞  

教授 博士生导师  

教师拼音名称:liguochang

电子邮箱:

学历:博士研究生

职称:教授

主要任职:高压绝缘系统与先进电工材料山东省工程研究中心副主任

毕业院校:西安交通大学

学科:

高电压与绝缘技术

邮箱:

通讯/办公地址:

手机版

访问量:

最后更新时间:..

Influence of Molecular Chain Side Group on the Electrical Properties of Silicone Rubber and Mechanism Analysis

关键字:RubberElectric breakdownDielectricsConductivityEnergy statesDielectric constantInsulationDielectric propertiesinsulation propertiesmolecular simulationsilicone rubber (SiR)

摘要:Influence mechanism of side group types on the macroscopic electrical properties of silicone rubber (SiR) are analyzed based on the experimental comparison and the molecular simulation. The insulation properties of SiR with different side group types (vinyl, phenyl, and trifluoropropyl), as well as binary compound SiR (vinyl/phenyl and vinyl/trifluoropropyl) are compared and studied experimentally. Further, the effect of side groups on the movement of the molecular chain is analyzed by calculating the free volume, the mean square displacement (MSD), and the end distances. Then the mechanism of its influence on the macroscopic properties of SiR was studied. The experimental results indicated that the resistance and breakdown performance of the phenyl SiR surpasses both vinyl SiR and fluorosilicone rubber owing to the conjugated structure of benzene ring, which has a high electron affinity and reduces free charges and carrier migration rate. Besides, when 10wt% phenyl SiR was mixed into vinyl SiR, the resistivity increased by one order of magnitude, and the breakdown field strength increased by about 8%. In the aspect of dielectric properties, the fluorosilicone rubber is more qualified than the vinyl SiR and the phenyl SiR due to the addition of trifluoropropyl as a polar group to the non-polar dielectric SiR to boost its dielectric constant and dielectric loss. The molecular simulation results indicated that the SiR containing phenyl has a tiny free volume and weak molecular chain movement, the fluorosilicone rubber has the strongest molecular chain movement. The work has important guiding significance for improving and modifying SiR in power equipment.

卷号:29

期号:4

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn