论文成果

Regulation of solvation structure and electrochemical performance optimization in Zn(NH2SO3)2-based electrolytes

发布时间:2025-07-14  点击次数:

关键字:-

摘要:Monovalent anions, with relatively low charge density, exhibit weak bond energy with Zn2 ions, which facilitates the solubility of Zn salts and the regulation of solvation structures. In this study, zinc bis (aminosulfate) (Zn(NH2SO3)2) with a monovalent anion, NH2SO3- , was synthesized and dissolved in different ratios of dimethyl sulfoxide (DMSO) and H2O as electrolytes for Zn-ion batteries (ZIBs). From the perspective of game theory, the influences of DMSO and H2O on the solvation structure and electrochemical performance of the Zn(NH2SO3)2 based electrolytes has been meticulously discussed. Computations and spectra analysis indicate that DMSO molecules are reluctant to penetrate the primary solvation structure of Zn2 ions. Indeed, increasing DMSO in electrolytes can induce a transition from solvent-separated ion pairs (SSIP) to contact ion pairs (CIP), resulting in an enrichment of anions in the primary solvation structure. This alteration can significantly suppress parasitic reactions, enhance nucleation density, and refine the deposition morphology during the Zn plating process, leading to superior cyclic stability and high coulombic efficiency (CE) of Zn//Cu and Zn//Zn cells. However, the enrichment of anions in the primary solvation structure also inhibits the activity of Zn2 ions, amplifies the polarization effect, and engenders a sluggish ionization dynamics, resulting in the low energy conversion efficiency of the battery. These findings underscore the influence of the anion ratio within the primary solvation structure on electrochemical properties of electrolytes for ZIBs, which may be a pivotal determinant in the Zn deposition process. (c) 2025 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

卷号:104

期号:-

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn

访问量: | 最后更新时间:-- | 开通时间:-- |手机版