中文

Defects level and internal electric field co-induced direct Z-scheme charge transfer for efficient photocatalytic H2 evolution over ZnIn2S4/In2Se3

Hits:

  • Key Words:HIGHLY EFFICIENT

  • Abstract:Developing rational strategy on inducing efficient direct Z-scheme charge transfer for boosting photocatalytic H2 evolution is stilling a challenging work. In this work, sulfur-deficient ZnIn2S4/In2Se3 (Vs-ZIS/In2Se3) was fabricated, in which, photogenerated electrons in the defect level of Vs-ZIS migrated to the valence band of In2Se3, meanwhile, the interfacial internal electric field provided charge transfer driving force. Under the syn-ergistic effect of defect level and internal electric field, Z-scheme charge transfer was realized in Vs-ZIS/In2Se3, not only accelerated the separation of photocarriers, but also reserved a great deal of photogenerated electrons with intense reducing ability. As a result, the optimized Vs-ZIS/In2Se3 photocatalyst exhibited a visible light -driven H2 evolution rate of 36.53 mmol center dot g- 1 center dot h-1 and an AQE of 17.14 % at 420 nm, about 9.72 and 104.4 -folds of that of Vs-ZIS and In2Se3 respectively. This work donates an advanced pattern for inducing direct Z -scheme charge transfer through creating defect level and internal electric field.

  • Volume:613

  • Issue:wu

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..