青岛科技大学  English 
李东祥
赞  

博士生导师  
硕士生导师  

教师拼音名称:lidongxiang

电子邮箱:

学历:博士研究生

学位:理学博士

毕业院校:山东大学

通讯/办公地址:

邮编:

邮箱:

移动电话:

手机版

访问量:

最后更新时间:..

Mesoporous La-based nanorods synthesized from a novel IL-SFME for phosphate removal in aquatic systems

关键字:SURFACTANT-FREE MICROEMULSION; LAYERED DOUBLE HYDROXIDE; HIGHLY EFFICIENT; ORGANIC FRAMEWORKS; ADSORPTION; WATER; MOF; EQUILIBRIUM; KINETICS; INSIGHTS

摘要:La-based nanorods with large mesopores were synthesized at a low temperature (35 degrees C) in a reverse surfactant-free microemulsion (SFME). The SFME consisted of hydrophilic ionic liquid (IL) propylammonium formate (PAF), hydrophobic IL 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF(6)), and protic IL diethylammonium formate (DEAF), corresponding to the water phase, oil phase, and amphi-solvent, respectively. This IL-SFME, as a new microemulsion, was formed by the three ionic liquids without any volatile organic solvents. The morphology and properties of the La-based material were investigated utilizing transmission electron microscope, X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, specific surface analysis, and zeta potential measurements. The obtained complex was lanthanum methanoate La(COOH)(3) which exhibited a large specific BET surface area (47.71 m(2)/g) and high pH(pzc) (11.63), assuming a remarkable removal ability on phosphate in aqueous solutions within a wide range of pH values. This paper presents a facile, non-toxic, and energy-efficient route of the material, owing to the absence of both surfactant and high temperature treatment usually adapted in other literatures. The adsorption of the La(COOH)(3) nanorods for phosphate was investigated by changing adsorbent dosage, initial phosphate concentration, contact time, and pH value. The sorption kinetics and isotherms of phosphate on the La-based adsorbent could be explained by the pseudo second-order and Langmuir model, respectively. The maximum adsorption capacity of the product was 381.6 mg PO43-/g, evidently higher than usual phosphate adsorbents. The study on the mechanism revealed that the adsorption mainly comes from the precipitation, electrostatic interaction, and ligand exchange. The adsorbed phosphate could nearly be desorbed by NaOH solution for reusability. To summarize, the synthesized mesoporous La-based nanorods unfolds a promising application in the phosphate adsorption.

卷号:624

期号:

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn