李彬   Professor

李彬,青岛科技大学材料科学与工程学院,崂山学者三层次教授,博士毕业于复旦大学化学系,师从赵东元院士,博士毕业后在新加坡南洋理工大学继续博士后的研究工作,合作导师陈晓东教授。主要从事新型多孔材料的合成与应用,尤其是在微介孔材料的控制合成、性能调控以及在电催化领域中形成了独特的思想见解,取得了一系列有影响力的研究成果。立项主持国家自然科学基金面上项目2项,主持国家自然科学基金山东省区域创新发...Detials

Corrosive engineering assisted in situ construction of an Fe-Ni-based compound for industrial overall water-splitting under large-current density in alkaline freshwater and seawater media

Release time:2023-10-19  Hits:

  • Key Words:RATIONAL DESIGN; REDUCTION; EFFICIENT; ELECTROCATALYSTS; NANOTUBES; CATALYSTS
  • Abstract:As a practical approach for hydrogen generation, electrolysis water-splitting, particularly in seawater, is considered an attractive technique. Herein, an Fe-Ni based compound on a NiFe foam (Fe-Ni-O-N) is in situ engineered via ambient corrosive engineering, following low-temperature nitridation. The as-prepared Fe-Ni-O-N presents a flower-like morphology composed of nanosheets with abundant active sites, large surface area, and rich channels. Moreover, the superhydrophobic surface and porous matrix favor accelerating the mass and charge transfer. Benefiting from the above merits, 1.49 and 1.51 V are required for Fe-Ni-O-N electrocatalyst for OER with low potentials to reach 500 mA cm(-2) in 1 M KOH fresh water and seawater. Moreover, to deliver 500 mA cm(-2), low cell voltages of 1.87 V and 1.90 V are required in 1 M KOH freshwater-splitting and seawater-splitting. For industrial applications, the assembled electrolyzer exhibits remarkable catalytic performances and stabilities under large current densities in freshwater and seawater (60 degrees C, 6 M KOH).
  • Volume:11
  • Issue:4
  • Translation or Not:no