李彬   Professor

李彬,青岛科技大学材料科学与工程学院,崂山学者三层次教授,博士毕业于复旦大学化学系,师从赵东元院士,博士毕业后在新加坡南洋理工大学继续博士后的研究工作,合作导师陈晓东教授。主要从事新型多孔材料的合成与应用,尤其是在微介孔材料的控制合成、性能调控以及在电催化领域中形成了独特的思想见解,取得了一系列有影响力的研究成果。立项主持国家自然科学基金面上项目2项,主持国家自然科学基金山东省区域创新发...Detials

Temperature-Induced Stacking to Create Cu2O Concave Sphere for Light Trapping Capable of Ultrasensitive Single-Particle Surface-Enhanced Raman Scattering

Release time:2023-10-19  Hits:

  • Key Words:concave structures; cuprous oxide; F68; light trapping; surface-enhanced raman scattering (SERS)
  • Abstract:The fabrication of bowl or concave particles with "asymmetric centers" has drawn considerable attentions, in which multiple scattering occurs inside the particles and the ability of light scattering is distinctly enhanced. However, the limited variety of templates, the uncontrollable dimensions such as the size of concavity and the complex growth process have posed serious limitations to the reproducible construction of concave particles with desired geometries and their light-trapping properties. Herein, a "temperature-induced stacking" strategy is proposed to create controllable concavity Cu2O spheres for the first time. Different sizes of F68 micelles can be formed through aggregation under different reaction temperatures, which can serve as soft template to tailor concave geometries of Cu2O spheres. The as-prepared Cu2O concave sphere (CS) can serve as single-particle (SP) surface-enhanced Raman scattering (SERS) substrate for highly repeatable and consistent Raman spectra. The unique cavity of Cu2O CS entraps light effectively, which also enhances the scattering length owing to multiple light scattering. Combined with slightly increased surface area and charge-transfer process, Cu2O CS exhibits remarkable single-particle SERS performance, with an ultralow low detection limit (2 x 10(-8) mol L-1) and metal comparable enhancement factor (2.8 x 10(5)).
  • Volume:28
  • Issue:33
  • Translation or Not:no