姜鲁华

教授

教授 博士生导师 硕士生导师

电子邮箱:

学历:博士研究生

办公地点:青岛科技大学 四方校区 化学化工大楼CCE1316

主要任职:纳米材料与电催化团队负责人

论文成果

当前位置: 中文主页 >> 研究成果 >> 论文成果

A unique sandwich-structured Ru-TiO/TiO2@NC as an efficient bi-functional catalyst for hydrogen oxidation and hydrogen evolution reactions

发布时间:2023-10-19 点击次数:

关键字:ALKALINE MEDIA; ELECTROCATALYST
摘要:Developing active and stable non-Pt electrocatalysts for hydrogen oxidation (HOR) and evolution reactions (HER) are critical for anion exchange membrane fuel cells and water electrolyzers. Herein, we report a highly active and robust electrocatalyst Ru-TiO/TiO2@NC, in which Ru nanoclusters are sandwiched between TiO/TiO2 nanosheets and nitrogen-doped carbon layers. Taking advantage of both the optimized Ru-TiO/TiO2 interaction and the conductive carbon coating layers, the Ru-TiO/TiO2@NC exhibits both exceptional HOR/HER activity and superior stability, outperforming Pt/C in the alkaline solution. The HOR mass activity reaches up to 107.2 A gRu-1 at an overpotential of 50 mV, and the specific exchange current density is 0.271 mA cm-2. The HER over-potential at 10 mA cm-2 is only 39 mV, 34 mV lower than required by Pt/C. More importantly, the Ru-based catalyst exhibits excellent anti-oxidation ability by virtue of the unique sandwich structure. Density functional theory calculations discover that the d-band center of Ru in Ru-TiO/TiO2 is downshifted by 0.29 eV compared to Ru-TiO2, decoupling and optimizing the Had/OHad adsorption on Ru, i.e., Had is promoted, while OHad is inhibited and transferred to TiO/TiO2. As a result, (i) the energy required by the potential determining step of HOR/HER is lowered, and (ii) the anti-oxidation ability of the Ru-TiO/TiO2 is enhanced. This work not only addresses the issue of Ru passivation at high anode potentials but also provides an innovative and versatile approach to designing advanced electrocatalysts.
卷号:472
期号:
是否译文: