贾长超   

个人简历:贾长超,青岛科技大学副教授,硕士生导师。长期从事半导体纳米材料可控合成及能源转换与存储研究,聚焦于纳米材料光催化研究,已在Adv. Funct. Mater.、 Chem. Eng. J.、Carbon、ACS Appl. Mater. Interfaces、Inorg. Chem. Front.等期刊发表SCI学术论文30余篇,授权发明专利10余项。主持山东省自然科学基金青年项目、中国博士后面上项目、青岛市自然科学基金原创探索项目等5项。获2019年山东省优秀博士学位论文。中...Detials

Guanidine carbonate assisted supramolecular self-assembly for synthesizing porous g-C3N4 for enhanced photocatalytic hydrogen evolution

Release time:2021-06-29  Hits:

  • Key Words:NITRIDE PHOTOCATALYSIS; H-2 PRODUCTION; WATER; DEPOSITION; PHOSPHORUS; ENERGY; FILMS
  • Abstract:Graphitic carbon nitride (g-C3N4) is taken as one of the most promising polymer semiconductor photocatalysts for energy conversion. However, the photocatalytic activity of g-C3N4 is usually impeded by the low light absorption and fast recombination of photogenerated carriers. Herein, three-dimensional porous g-C3N4 with controllable morphology are synthesized by thermal polycondensation of supramolecular preorganization assembly of melamine, cyanuric acid and guanidine carbonate (1:1:x, x means the ratio of guanidine carbonate). By adjusting the amount of guanidine carbonate in the assembly, the precursors' morphology can be changed from microrods to polyhedrons, which affects the g-C3N4 structure accordingly. The optimized hollow porous polyhedral g-C3N4 shows the enhanced light absorption and improved photogenerated carriers separation efficiency, thus exhibiting a 7.7-fold hydrogen evolution activity and 9-fold apparent quantum efficiency (AQE) higher than microtube without addition of guanidine carbonate. This work paves a complementary way towards synthesizing highly efficient photocatalysts through the guanidine carbonate-assisted supramolecular assembly. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Volume:46
  • Issue:38
  • Translation or Not:no