贾长超   

个人简历:贾长超,青岛科技大学副教授,硕士生导师。长期从事半导体纳米材料可控合成及能源转换与存储研究,聚焦于纳米材料光催化研究,已在Adv. Funct. Mater.、 Chem. Eng. J.、Carbon、ACS Appl. Mater. Interfaces、Inorg. Chem. Front.等期刊发表SCI学术论文30余篇,授权发明专利10余项。主持山东省自然科学基金青年项目、中国博士后面上项目、青岛市自然科学基金原创探索项目等5项。获2019年山东省优秀博士学位论文。中...Detials

Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration

Release time:2021-03-15  Hits:

  • Key Words:REDOX BIOCATALYSIS; HYDROGEN EVOLUTION; GRAPHENE FILMS; G-C3N4; WATER; HETEROJUNCTION; DRIVEN; LIGHT; PHOTOCATALYSIS; REDUCTION
  • Abstract:The development of a metal-free photoelectrode film is of great significance. Herein, graphitic carbon nitride (g-C3N4) nanosheets with a concentration of up to 36 mg mL(-1) were first obtained on a large scale using a wet ball-milling method. The obtained g-C3N4 nanosheets exhibit 6- and 8-times higher activity in terms of photocatalytic H-2 evolution and nicotinamide adenine dinucleotide (NADH) regeneration than bulk g-C3N4, respectively. Furthermore, a uniform g-C3N4 film electrode was fabricated via the interfacial self-assembly of nanosheets at the air/water interface, which can be transferred onto various substrates. By coupling with graphene nanosheets, a g-C3N4/graphene hybrid film electrode was assembled at the interface, showing improved photoelectrochemical coenzyme NADH regeneration efficiency. The photoelectrochemical system uses water as the electron donor, which avoids the drawback of using additional sacrificial agents. This work presents a novel and facile method to prepare highquality g-C3N4 hybrid films, and also provides a sustainable route for renewable energy conversion and biocatalytic applications.
  • Volume:7
  • Issue:13
  • Translation or Not:no