Language : English
郝春成

Paper Publications

Enhanced thermal conductivity and electrical insulation by patterned self-assembly of electrospun nanofibers

Hits:

Key Words:COMPOSITES

Abstract:Low intrinsic thermal conductivity (TC) of polymer materials has severely limited their further applicability in electronic and electrical products. To enhance the TC, a strategy for constructing nanofiller-based thermal conductive networks by patterned self-assembly of electrospun nanofibers was first proposed in this paper. By selecting a regular metal mesh as the collector, the electrostatic field-induced directional deposition of nanofibers was achieved, thereby constructing interconnected heat transfer paths aligned in at least four directions. The inplane TC of heat-pressed electrospun polyvinylidene fluoride (PVDF) nanofibers with 20 wt% loading of boron nitride nanosheets (BNNSs) can reach 7.27 W/(m & sdot;K). Electrical insulation of the PVDF/BNNS composites has also been confirmed, showing high volume resistivity and breakdown strength, which have increased by 460.0 % and 26.6 %, respectively, compared to pure PVDF. Finally, a double-layer composite film with waterproof and easycleaning characteristics was prepared for electronic device packaging. This simple and efficient preparation strategy for thermal conductive networks may bring new perspectives to thermal management applications.

Volume:246

Issue:

Translation or Not:no