关键字:TOTAL-ENERGY CALCULATIONS; HYDROGEN EVOLUTION; RAMAN-SPECTROSCOPY; MOLYBDENUM OXIDES; ALKALINE; NANORODS; NI; ELECTROCATALYSTS; ELECTROLYSIS; NANOSHEETS
摘要:Combining the urea oxidation reaction (UOR) with the hydrogen evolution reaction (HER) is an effective technology for energy-saving hydrogen production. Herein, a bifunctional electrocatalyst with CoNiP nanosheet coating on P-doped MoO2 nanorods (P-MoO2@CoNiP) is obtained via a two-step hydrothermal followed a phosphorization process. The catalyst demonstrates exceptional alkaline HER performance due to the formation of MoO2 and the dissolution/absorption of Mo. Meanwhile, the inclusion of Co and P in the P-MoO2@CoNiP catalyst facilitated the formation of NiOOH, enhancing UOR performance. Density functional theory calculations reveal that the hydrogen adsorption Gibbs free energy (Delta GH*) of P-MoO2@CoNiP is closer to 0 eV than CoNiP, favoring the HER. The catalyst only needs -0.08 and 1.38 V to reach 100 mA cm- 2 for catalyzing the HER and UOR, respectively. The full urea electrolysis system driven by P-MoO2@CoNiP requires 1.51 V to achieve 100 mA cm- 2, 120 mV lower than the traditional water electrolysis.
卷号:676
期号:
是否译文:否