青岛科技大学  English 
高洪涛
赞  

教师拼音名称:gaohongtao

手机版

访问量:

最后更新时间:..

Wo(3)/TiO2 nanocomposites: Salt-ultrasonic assisted hydrothermal synthesis and enhanced photocatalytic activity

关键字:WO3/TiO2 nanocomposites; Hydrothermal synthesis; Photocatalytic activity; RhB

摘要:A series of WO3/TiO2 composite photocatalysts were fabricated via a facile salt-ultrasonic assisted hydrothermal process. The obtained samples were characterized by X-ray diffraction, scanning eletron microscopy, energy dispersive X-ray spectroscopy and UV-vis diffused reflectance spectroscopy. It was confirmed that anatase TiO2 and monoclinic WO3 coexisted in the composites. The photocatalytic activity of as-prepared WO3/TiO2 composites for degradation of Rhodamin B (RhB) under visible light irradiation was investigated. The results showed that WO3/TiO2 composites have a higher photocatalytic activity than those of pure TiO2 and pure WO3. First-principle calculations based on density functional theory were performed to explore the electronic structure and illustrate the photocatalytic mechanism of WO3/TiO2. The calculated energy gap was 2.53 eV, which was close to the experimental observation (2.58 eV). Due to the combination of WO3/TiO2, the photoinduced electrons and holes transfer between the WO3 and TiO2 in opposite directions, thus providing sufficient charge separation, which contributed to the photocatalytic activity enhancement. (C) 2013 Elsevier Ltd. All rights reserved.

卷号:16

期号:6

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn