青岛科技大学  English 
冯建光
赞  

副教授

教师拼音名称:fengjianguang

所在单位:泰山学者团队(董立峰)

职称:副教授

毕业院校:北京化工大学

移动电话:

邮箱:

手机版

访问量:

最后更新时间:..

Quick screening stable double perovskite oxides for photovoltaic applications by machine learning

关键字:CO

摘要:Rapid discovery of functional materials remains a public challenge because traditional trial and error methods are general inefficient, especially when thousands of candidates are treated. Machine learning (ML) is essential to deal with a large number of data sets, predict unknown material properties and reveal the relationship between structures and properties. Herein, in order to find double perovskite oxide (DPO) materials for solar cells, we design a framework and develop a robust ML model to predict band gaps of DPOs based on a dataset containing band gap values of 236 experimentally studied perovskite oxides. Successfully, 236 promising stable ferroelectric photovoltaic DPOs with suitable band gaps are screened out from 4,058,905 candidate compositions. The developed ML model provides an excellent predictive performance (R2 : 0.932, RMSE : 0.196 eV) based on only three component features. Moreover, our statistical graph confirms the previous studies that tuning the electronegativity difference between oxygen and B site cation via doping foreign cations could change the band gaps of perovskite oxides. These findings show that ML is very promising not only for predicting the properties, but also for investigation on the physical law.

卷号:48

期号:13

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn