青岛科技大学  English 
樊春玲
赞  

教师拼音名称:fanchunling

手机版

访问量:

最后更新时间:..

A MVMD-MMFE algorithm and its application in the flow patterns identification of horizontal oil-water two-phase flow

关键字:EMPIRICAL MODE DECOMPOSITION

摘要:Aiming to extract the main information features of fluid multivariate conductance signals and identify the flow patterns under different flow velocities, we present a multichannel time series analysis algorithm based on the multivariate variational mode decomposition (MVMD) and multivariate multiscale fuzzy entropy (MMFE). Firstly, by simulating a multichannel complex signal and performing a series of sensitivity experiments within various noise intensities, we prove the feasibility of the MVMD in chaotic time series. Then, we employ the MVMD to decompose multivariate conductance signals into the intrinsic mode function (IMF) and calculate the MMFE of the IMFs for different flow patterns. Meanwhile, the multivariate empirical mode decomposition (MEMD) is also applied on the comparison of signal decomposition. Finally, we discuss the classification consequence under different mode values k to realize the optimal decomposition. The experimental results show that the MVMD-MMFE algorithm can extract the main information of fluid multichannel signals and distinguish three horizontal oil-water flow patterns effectively, which provides an idea for studying the nonlinear characteristics of the chaotic system.

卷号:77

期号:10

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn