青岛科技大学  English 
樊春玲
赞  

教师拼音名称:fanchunling

手机版

访问量:

最后更新时间:..

基于峭度系数和隐马尔科夫模型的气液两相流流型识别方法

摘要:In this paper we apply Bayesian neural networks to life modeling and prediction with real data from a dynamically tuned gyroscopes (DTG). The Bayesian approach provides consistent way to inference by integrating the evidence from data with prior knowledge from the problem. Bayesian neural networks can overcome the main difficulty in controlling the model's complexity of modeling building of standard neural network. And the Bayesian approach offers efficient tools to avoid overfitting even with very complex models, and facilitates estimation of the confidence intervals of the results. In this paper, we review the Bayesian methods for neural networks and present results of case study in life modeling and prediction of DTG.

卷号:3174

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn