中文

Spatial Linear Dynamic Relationship of Strongly Connected Multiagent Systems and Adaptive Learning Control for Different Formations

Hits:

  • Key Words:CONSENSUS; MODEL; SYNCHRONIZATION; TRACKING

  • Abstract:This article addresses an important problem of how to improve the learnability of an intelligent agent in a strongly connected multiagent network. A novel spatial-dimensional linear dynamic relationship (SLDR) is developed to formulate the spatial dynamic relationship of an agent with respect to all the related agents. The obtained SLDR virtually exists in the computer to describe the input-output (I/O) relationship in the spatial domain and an iterative adaptation mechanism is developed to update the SLDR using I/O information to show real-time dynamical behavior of multiagent systems with nonrepetitive initial states. Subsequently, an SLDR-based adaptive iterative learning control (SLDR-AILC) is presented with rigorous analysis for iteration-variant formation control targets. Not only the 3-D dynamic behavior of the multiagent network but also the control protocols of the communicated agents are incorporated in the learning mechanism and thus strong learnability of the proposed SLDR-AILC is achieved to improve control performance. The proposed SLDR-AILC is a data-driven scheme where no explicit model structure is needed. Simulations with strongly connected topologies verify the theoretical results.

  • Volume:52

  • Issue:1

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..