中文

Extended State Observer-Based Data-Driven Iterative Learning Control for Permanent Magnet Linear Motor With Initial Shifts and Disturbances

Hits:

  • Key Words:*

  • Abstract:In this paper, an extended state observer-based data-driven iterative learning control [extended state observer (ESO)-based DDILC] is developed for a permanent magnet linear motor (PMLM). The PMLM is formulated mathematically by using a general nonlinear discrete-time system with consideration of exogenous disturbances. Then, a new iterative dynamic linearization (IDL) is proposed to equivalently reformulate the nonlinear PMLM system with a linear input-output incremental form involving iteration-varying initial states and disturbances. The concept of ESO is introduced into iteration direction to iteratively estimate the random initial states and disturbances as well as their corresponding partial derivatives by considering all of them as a whole extended state. The proposed ESO-based DDILC scheme contains a learning control algorithm and a gradient parameter updating algorithm obtained from two distinct objective functions, respectively. Moreover, the proposed method is data-driven and no explicit model is involved. Theoretical analysis shows the robustness of the proposed method in the presence of iteration-varying initial shifts and disturbances. The simulation on PMLM is conducted to confirm the validity and applicability of the ESO-based DDILC.

  • Volume:51

  • Issue:3

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..