中文

Discrete-time Adaptive ILC for Non-parametric Uncertain Nonlinear Systems with Iteration-Varying Trajectory and Random Initial Condition

Hits:

  • Key Words:Adaptive iterative learning control; non-parametric uncertainties; nonlinear discrete-time system; random initial condition; iteration-varying target trajectories

  • Abstract:This paper presents a new discrete-time adaptive iterative learning control approach (AILC) for a class of time-varying nonlinear systems with nonparametric uncertainties and non-repeatable external disturbances by incorporating a novel iterative estimate scheme. A major distinct feature of the presented approach is that uncertainties can be completely compensated for, using only I/O data. Another distinct feature is that the pointwise convergence is achieved over a finite time interval without requiring the matching condition on initial states and reference trajectory. Rigorous mathematical analysis is developed, and simulation results illustrate the effectiveness of the proposed approach.

  • Volume:15

  • Issue:2

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..