中文

Enhanced Data-Driven Optimal Terminal ILC Using Current Iteration Control Knowledge

Hits:

  • Key Words:Current iteration control information; data-driven control; nonlinear discrete-time systems; terminal iterative learning control (TILC); time-varying control input signals

  • Abstract:In this paper, an enhanced data-driven optimal terminal iterative learning control (E-DDOTILC) is proposed for a class of nonlinear and nonaffine discrete-time systems. A dynamical linearization approach is first developed with iterative operation points to formulate the relationship of system output and input into a linear affine form. Then, an ILC law is constructed with a nonlinear learning gain, which is a function about the system partial derivative with respect to the time-varying control input. In addition, a parameter updating law is designed to estimate the unknown partial derivatives iteratively. The input signals of the proposed E-DDOTILC are time-varying and updated utilizing not only the terminal tracking error of the previous run but also the input signals of the previous time instants in the current iteration. The proposed approach is a data-driven control strategy and only the I/O data are required for the controller design and analysis. The monotonic convergence and effectiveness of the proposed approach is further verified by both the rigorous mathematical analysis and the simulation results.

  • Volume:26

  • Issue:11

  • Translation or Not:no


Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..