CN

陈克正

Professor

Supervisor of Doctorate Candidates

Supervisor of Master's Candidates

Date of Birth:1965-10-27

Paper Publications

A facile approach to fabricate of photothermal functional Fe<inf>3</inf>O<inf>4</inf>@CuS microspheres

Release time:2023-10-19 Hits:

Key Words:Magnetic bubbles;Composite materials - Conversion efficiency - Dispersions - Efficiency - Magnetism - Microspheres - Saturation magnetization;Applied magnetic fields - Cetyltrimethylammonium bromide - Chemical deposition method - Core-shell microspheres - Magnetic - Photothermal conversion efficiencies - Photothermal stability - UV-VIS-NIR spectrophotometers

Abstract:Photothermal functional Fe<inf>3</inf>O<inf>4</inf>@CuS microspheres have been prepared successfully by a simple chemical deposition method. The adsorption of cetyltrimethyl-ammonium bromide (CTAB) on the magnetic microspheres plays an important role in forming the structure of the composites. The present materials are characterized with XRD, TEM, SEM, FTIR, and UV-VIS-NIR spectrophotometer. The results show that Fe<inf>3</inf>O<inf>4</inf>microspheres are coated by CuS layer with thickness of 10&nbsp;nm. The saturation magnetization value of Fe<inf>3</inf>O<inf>4</inf>@CuS core-shell microspheres is 27 emu/g at room temperature and the sample possesses excellent magnetic response in the presence of applied magnetic field. Moreover, these microspheres exhibit good dispersion, suitable size and significant photothermal conversion efficiency up to 20.7% at 808&nbsp;nm laser irradiation. Fluctuation value of the highest temperature of Fe<inf>3</inf>O<inf>4</inf>@CuS dispersion over four times LASER ON/OFF indicates that photothermal stability of Fe<inf>3</inf>O<inf>4</inf>@CuS microspheres is good. &copy; 2017 Elsevier B.V.

Volume:193

Issue:

Translation or Not:no

Click:times | The Founding Time:.. | The Last Update Time:..

Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e