关键字:NiO@USY composites; Carbon dioxide; Adsorption; Separation; Adsorption selectivity
摘要:Adsorption process is considered to be the most promising alternative for the CO2 capture to the traditional energy-intensive amine absorption process, and the development of feasible and efficient CO2 adsorbents is still a challenge. In this work, the NiO@USY (ultrastable Y) composites with different NiO loadings were prepared for the CO2 adsorption using Ni(NO3)2 as the precursor. The composites were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, nitrogen adsorption-desorption test, scanning electron microscopy analysis, and thermogravimetric analysis, and were evaluated for the CO2 adsorption capacity, CO2/N2 adsorption selectivity and CO2 cycle adsorption capacity. The characterization results show that after the activation at 423 K, the Ni(NO3)2 species were well dispersed into the surface of zeolite USY, and after the further activation at 823 K, Ni(NO3)2 could be converted into highly dispersed NiO. The adsorption results show that the presence of the active component NiO plays an important role in improving the CO2 adsorption performance, and the NiO@USY composite with a NiO loading of 1.5 mmol???g???1 USY support displays a high adsorption capacity and adsorption selectivity for CO2, and shows a good cycle stability. In addition, the Clausius-Clapeyron equation was used to evaluate the isosteric heat of adsorption of CO2 on the NiO(1.5)@USY composite, and the heat of adsorption was 17.39-38.34 kJ center dot mol-1.
卷号:46
期号:0
是否译文:否