摘要:The velocity field macro-instability (MI) can help to improve the mixing efficiency. In this work, the MI features of flow field induced by jet-stirred coupling action is studied by using computational fluid dynamics (CFD) simulations. The numerical simulation method of jet-stirred model was established based on standard turbulent equations, and the impeller rotation was modeled by means of the Sliding Mesh (SM) technology. The numerical results of test fluid (water) power consumption were compared with the data obtained by power test experiments. The effects of jet flow velocity and impeller speed on MI frequency were analyzed thoroughly. The results show that the calculated values of power consumption agree well with the experiment measured data, which validates the turbulent model, and the flow structure and MI frequency distribution are affected by both impeller speed and jet flow rate. The amplitude of MI frequency increases obviously with the increasing rotation speed of impeller and the eccentric jet rate, and it can be enhanced observably by eccentric jet rate, in condition of comparatively high impeller speed. At this time, the MI phenomenon disappears with the overall chaotic mixing.
卷号:129
是否译文:否