中文

Boosting charge separation in graphdiyne quantum dots/hollow tubular carbon nitride heterojunction for water pollutant degradation

Hits:

  • Key Words:BISPHENOL-A; PHOTOCATALYTIC DEGRADATION; G-C3N4 NANOSHEETS; PEROXYMONOSULFATE; TIO2; NANOCOMPOSITES; COMPOSITES; PHOSPHORUS; ACTIVATION; CATALYSIS

  • Abstract:Non-desirable solar energy absorption and poor charge transfer efficiency are two problems that limit the per-oxymonosulfate (PMS) photocatalytic techniques. Herein, a metal-free boron-doped graphdiyne quantum dot (BGDs) modified hollow tubular g-C3N4 photocatalyst (BGD/TCN) was synthesized to activate PMS and achieved effective space separation of carriers for degradation of bisphenol A. With 0.5 mM PMS, the degradation rate of bisphenol A (20 ppm) was 0.0634 min-1, 3.7-fold higher than that of TCN itself. The roles of BGDs in the dis-tribution of electrons and photocatalytic property were well identified by experiments and density functional theory (DFT) calculations. The possible degradation intermediate products of bisphenol A were monitored by mass spectrometer and demonstrated to be nontoxic using ecological structure activity relationship modeling (ECOSAR). Finally, this newly-designed material was successfully applied in actual water bodies, which further renders its promising prospect for actual water remediation.

  • Volume:646

  • Issue:

  • Translation or Not:no


  • Email:

  • Telephone:

Laoshan Campus-99 Songling Road, Qingdao City, Shandong Province
Sifang Campus-No.53 Zhengzhou Road, Qingdao City, Shandong Province
Sino-German International Cooperation Zone (Sino-German Campus)-No. 3698 Tuanjie Road, West Coast New District, Qingdao City, Shandong Province
Gaomi Campus-No. 1 Xingtan West Street, Gaomi City, Shandong Province
Jinan Campus-No. 80 Wenhua East Road, Jinan City, Shandong Province ©2015 Qingdao University of Science and Technology
Administrator email: master@qust.e
Click:
  MOBILE Version

The Last Update Time:..