论文成果
基于自注意力机制的深度学习的海洋三维温度场预测
点击次数:
关键字:海水温度;三维温度场预测;自注意力记忆机制;SA-ConvLSTM;多步长递归预测
摘要:目前主要从时空角度出发对海洋三维温度场进行预测,却忽略了相邻位置的海温相关关系。为弥补这一不足,构建一种融合了自注意力记忆模块与卷积式长短时记忆神经网络(ConvLSTM)模型的SA-ConvLSTM三维温度场预测模型,不仅可以从历史三维温度场中提取海温时空特征,还能获取并记忆相邻点位置信息,从而实现对三维温度场时空变化的把握。实验结果表明:相较于ConvLSTM模型,SA-ConvLSTM模型在滑动预测与多步长递归预测实验下的均方根误差和平均绝对误差提升约14%,且整体预测效果均优于基线模型、长短时记忆神经网络模型和ConvLSTM模型。
卷号:v.41;No.187
期号:03
是否译文:

朱善良

教授 硕士生导师

教师拼音名称:zhushanliang

学历:博士研究生

办公地点:数理学院227房间

联系方式:zhushanliang@qust.edu.cn

学位:工学博士

所属院系:数理学院

移动电话 :

邮箱 :

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..