论文成果
Adaptive decentralized prescribed performance control for a class of large-scale stochastic nonlinear systems subject to input saturation and full state constraints
点击次数:
关键字:DYNAMIC SURFACE CONTROL; OUTPUT-FEEDBACK STABILIZATION; TRACKING CONTROL; NEURAL-CONTROL
摘要:This paper focuses on an adaptive decentralized prescribed performance control problem for a class of large-scale stochastic nonlinear systems with asymmetric input saturation and full state constraints. Firstly, the obstacle of input saturation is overcome by introducing the Gaussian error functions. Secondly, the transient performance of the system output is realized by introducing the asymmetric error transfer functions. Thirdly, the full state constraints are considered in the backstepping control process, and the boundary of state constraints is ensured by constructing barrier Lyapunov functions. Then, the multidimensional Taylor network is employed to approximate the unknown nonlinearity, and an adaptive decentralized controller is designed. Finally, it is shown that the proposed control strategy can ensure that the closed-loop system is semi-global ultimately uniformly bounded in probability, and the tracking error of the system can be kept within an adjustable neighborhood of the origin. Two simulation examples are provided to illustrate the feasibility of the proposed control strategy.
卷号:37
期号:9
是否译文:

朱善良

教授 硕士生导师

教师拼音名称:zhushanliang

学历:博士研究生

办公地点:数理学院227房间

联系方式:zhushanliang@qust.edu.cn

学位:工学博士

所属院系:数理学院

移动电话 :

邮箱 :

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn
访问量: 手机版 English 青岛科技大学

最后更新时间: ..