当前位置: Xing Group >> 科学研究 >> 论文成果

虚拟立体截交实验的算法分析与程序实现

发布时间:2023-10-19点击次数:

  • 关键字:NANOSHEETS; MOBILITIES
  • 摘要:Designing single-component materials with white-light electroluminescence is highly demanded for artificial lighting applications. Here, the authors fabricate a single-component white-light electroluminescence device based on an aromatic carbon nitride material with high maximum luminance and external quantum efficiency. Artificial lighting consumes almost one-fifth of global electricity. As an efficient solid-state lighting technology, white light-emitting diodes (WLEDs) have received increasing attention. However, the white luminescence of the traditional WLEDs comes from multi-component emitters, which leads to complex device structure and unstable emitting color. Therefore, developing single-component materials with white-light electroluminescence is of significance for artificial lighting applications. Here, we fabricate single-component white-light electroluminescence devices based on an aromatic carbon nitride material and improve the performance of WLEDs by adjusting the carrier transport. The carbon nitride LEDs emit warm-white light, of which color coordinates and color temperature are (0.44, 0.52) and 3700 K. The optimized LEDs display a very low turn-on voltage of 3.2 V and achieve a milestone in the maximum luminance and external quantum efficiency of 1885 cd m(-2) and 1.20%. Our findings demonstrate the low-cost carbon nitride materials have promising potential for single-component WLEDs application.
  • 卷号:13
  • 期号:1
  • 是否译文:否
+
论文成果

个人信息

  • 职称:教授
  • 学历:博士研究生
  • 学位:工学博士
  • 所在单位:化学与分子工程学院
  • 学科: 物理化学

学术荣誉:

  • 2019  当选: 省高端人才