青岛科技大学  English 
聂广明
赞  

教师拼音名称:N G M

手机版

访问量:

最后更新时间:..

An enhanced photoelectrochemical sensor for aflatoxin B1 detection based on organic-inorganic heterojunction nanomaterial: poly(5-formylindole)/NiO

关键字:ELECTROCHEMICAL APTASENSOR; ULTRASENSITIVE DETECTION; SIGNAL; IMMUNOSENSOR; AMPLIFICATION; IMMUNOASSAY; GENERATION

摘要:A new strategy for enhancing the photoelectric activity of poly(5-formylindole) (P5FIn) was developed by introducing the inorganic semiconductor material (NiO) to form organic-inorganic heterojunctions. P5FIn/NiO heterojunctions were firstly prepared by combining hydrothermal synthesis and electrochemical polymerization. Due to the synergistic effect between P5FIn and NiO, the photoelectrochemical (PEC) performance of this heterojunction was significantly enhanced compared to pure P5FIn and NiO. The reason for the enhanced PEC performance is mainly attributed to the increased visible light utilization and the bandgap matching effect of the P5FIn/NiO heterojunctions. Based on the prepared P5FIn/NiO heterojunctions, a novel PEC sensor for aflatoxin B1 (AFB1) detection was also constructed with a wide linear range of 0.005-50 ng mL(-1)and a limit of detection (LOD) of 0.0015 ng mL(-1). Moreover, this constructed PEC sensor also had good stability, reproducibility, selectivity, and satisfactory actual sample detection ability. This strategy may inspire more design and application of high-performance photoelectric active material based on inorganic semiconductor and organic conducting polymer heterojunctions.

卷号:187

期号:8

是否译文:

崂山校区 - 山东省青岛市松岭路99号   
四方校区 - 山东省青岛市郑州路53号   
中德国际合作区(中德校区) - 山东省青岛市西海岸新区团结路3698号
高密校区 - 山东省高密市杏坛西街1号   
济南校区 - 山东省济南市文化东路80号©2015 青岛科技大学    
管理员邮箱:master@qust.edu.cn