关键字:HIGHLY EFFICIENT ELECTROCATALYST; GRAPHENE; NANOSHEETS; REDUCTION; CATALYST
摘要:Graphdiyne (GDY) with the characteristic delocalized sp and sp2 electronic structure is an excellent carbon carrier for metal-based catalysts. However, the semiconductor properties limited its electrocatalytic activity. Herein, a two-dimensional (2D) few-layered graphdiyne/graphene (GDY/G) heterostructure was employed to anchor NiFe layered double hydroxides (NiFe-LDH) for enhanced oxygen evolution reaction (OER). This heterostructure not only exhibits excellent conductivity for charge transfer due to the graphene layer, but also significantly regulates the electronic structure of NiFe-LDH for enhanced intrinsic activity on account of the strong covalent bond between the Ni/Fe active site and GDY. Remarkably, the NiFe-LDH/GDY/G catalyst achieved a competitive low overpotential of 215 mV @ 10 mA cm-2 as well as a small Tafel slope of 22 mV decxfffd; 1. The improved OER kinetics could be attributed to the unique few-layered GDY/G heterostructure with a larger electrochemical active surface area, faster charge transfer kinetics, and higher intrinsic activity.
卷号:637
期号:wu
是否译文:否